Các nền văn minh cổ đại quanh Địa Trung Hải đã biết một số vật, như miếng hổ phách, khi chà xát với lông mèo có thể hút được những vật nhẹ như da động vật. Thales của Miletos đã thực hiện những khảo cứu về hiện tượng tĩnh điện vào khoảng năm 600 TCN, mà ông cho rằng gây ma sát lên thanh hổ phách làm sinh ra nam châm, ngược lại với một số khoáng vật như magnetit mà không cần chà xát.[6][7] Thales đã không đúng khi cho rằng lực hút là do hiệu ứng tương tự như nam châm, nhưng sau này khoa học đã chứng minh giữa từ học và điện học có mối liên hệ với nhau. Theo một lý thuyết gây tranh cãi, người Parthia đã có những hiểu biết về kỹ thuật mạ điện, dựa trên một khám phá vào năm 1936 về khối pin Baghdad có đặc tính giống như pin Galvani, mặc dù người ta không chắc liệu khối pin này có bản chất liên quan đến điện hay không.[8]
Benjamin Franklin thực hiện nhiều nghiên cứu về điện trong thế kỷ 18, như được Joseph Priestley (1767) miêu tả trong cuốn History and Present Status of Electricity, người đã có nhiều thư từ qua lại với Franklin.
Sự hiểu biết về điện vẫn chỉ là sự tò mò trí tuệ trong hàng nghìn năm cho đến tận giai đoạn 1600, khi nhà khoa học người Anh William Gilbert nghiên cứu chi tiết về điện học và từ học, với việc phân biệt hiệu ứng từ đá nam châm lodestone với hiệu ứng tĩnh điện từ hổ phách bị chà xát.[6] Ông đưa ra thuật ngữ La Tinh mới electricus (“của hổ phách” hay “giống với hổ phách”, xuất phát từ ήλεκτρον [elektron], tiếng Hy Lạp có nghĩa là “hổ phách”) cho những vật có tính chất hút những vật nhỏ sau khi bị chà xát.[9] Từ này là nguồn gốc của tiếng Anh cho từ “electric” và “electricity”, mà xuất hiện đầu tiên trong bản in Pseudodoxia Epidemica của Thomas Browne năm 1646.[10]
Các nhà khoa học Otto von Guericke, Robert Boyle, Stephen Gray và C. F. du Fay tiếp tục có những nghiên cứu sâu hơn về điện. Trong thế kỷ 18, Benjamin Franklin đã bán tài sản của mình để ông có thể thực hiện nhiều cuộc nghiên cứu về điện. Tháng 6 năm 1752, ông thực hiện một thí nghiệm nổi tiếng khi gắn một chìa khóa kim loại vào cuối dây bị ướt của một cái diều và thả nó vào trong một cơn bão.[11] Mục đích của ông trong thí nghiệm này nhằm tìm ra sự liên hệ giữa hiện tượng sét và điện.[12] Ông cũng giải thích một nghịch lý kỳ lạ vào thời đó của chai Leyden khi cho rằng nó là thiết bị lưu trữ lượng lớn các điện tích.
Michael Faraday thiết lập lên cơ sở của động cơ điện.
Năm 1791, Luigi Galvani công bố khám phá ra hiện tượng điện từ sinh học (bioelectromagnetics), chứng minh dòng điện là môi trường giúp cho các tế bào thần kinh truyền tín hiệu đến các cơ.[13] Đến năm 1800, Alessandro Volta phát minh ra pin Volta, làm từ các tấm kẽm và đồng xếp đan xen nhau, mang lại cho các nhà khoa học một nguồn điện duy trì lâu hơn so với các nguồn tĩnh điện trước đó.[13] Sự nhận ra của thuyết điện từ học, trong đó thống nhất giữa các hiện tượng điện và từ, là nhờ các đóng góp của Hans Christian Ørsted và André-Marie Ampère trong giai đoạn 1819-1820; Michael Faraday phát minh ra động cơ điện vào năm 1821, và Georg Ohm đã thực hiện phân tích bằng toán học về mạch điện vào năm 1827.[13] Điện học và từ học (và cả ánh sáng) cuối cùng được James Clerk Maxwell thống nhất lại với nhau bằng lý thuyết ông miêu tả trong tác phẩm “On Physical Lines of Force” năm 1861 và 1862.[14]
Trong khi đầu thế kỷ 19 chứng kiến tiến trình phát triển nhanh chóng của khoa học về điện, thì cuối thế kỷ 19 đã mở ra sự thúc đẩy mạnh mẽ của kỹ thuật điện. Gắn với tên tuổi của các nhà nghiên cứu như Alexander Graham Bell, Ottó Bláthy, Thomas Edison, Galileo Ferraris, Oliver Heaviside, Ányos Jedlik, William Thomson, Sir Charles Parsons, Ernst Werner von Siemens, Joseph Swan, Nikola Tesla và George Westinghouse, điện đã chuyển từ lý thuyết khoa học sang công cụ cơ bản cho nền văn minh hiện đại, mang đến Cuộc cách mạng công nghiệp lần thứ hai.[15]
Năm 1887, Heinrich Hertz[16][17] phát hiện ra rằng khi chiếu tia cực tím vào tấm điện cực sẽ dễ dàng tạo ra sự phóng tia điện (electric spark) từ nó. Năm 1905 Albert Einstein công bố một bài báo nhằm giải thích các kết quả thực nghiệm từ hiệu ứng quang điện do Hertz khám phá khi cho rằng năng lượng ánh sáng bị lượng tử hóa thành các gói rời rạc, và những gói này truyền năng lượng cho electron bật ra. Bài báo này là một trong những đột phát khai sinh ra lý thuyết cách mạng cơ học lượng tử. Einstein được trao Giải Nobel Vật lý năm 1921 cho “sự khám phá của ông về hiệu ứng quang điện cũng như những nghiên cứu nền tảng cho vật lý học”.[18] Hiệu ứng quang điện là cơ sở cho sự hoạt động của pin Mặt Trời, các CCD trong máy ánh kỹ thuật số và nhiều ứng dụng khác.
Thiết bị sử dụng vật liệu trạng thái rắn đầu tiên là thiết bị dò sợi râu mèo (“cat’s whisker” detector), dùng để thu tín hiệu vô tuyến trong thập niên 1930. Sợi râu tiếp xúc nhẹ với một tinh thể rắn (như tinh thể germanium) nhằm phát hiện ra tín hiệu radio thông qua hiệu ứng mối nối tiếp xúc.[19] Trong linh kiện chất rắn, dòng điện bị hạn chế bởi các linh kiện bán dẫn và tổ hợp linh kiện nhằm bật tắt hay khuếch đại chúng. Dòng điện có thể biểu hiện dưới hai dạng: các electron mang điện âm, và các ion dương bị thiếu electron gọi là các lỗ trống electron. Các điện tích và lỗ trống này được giải thích theo ngôn ngữ của cơ học lượng tử, và chúng là cơ sở cho sự hoạt động của các chất bán dẫn.[20][21]
Thiết bị bán dẫn đi vào ứng dụng thực tế khi tranzitor được phát minh ra vào năm 1947. Nói chung mạch điện tử gồm các thiết bị bán dẫn như tranzitor, chip vi xử lý, và RAM. Một loại RAM đặc biệt là bộ nhớ flash được sử dụng trong các ổ USB flash và gần đây là ổ lưu trữ trạng thái rắn nhằm thay thế các đĩa từ quay trong các ổ đĩa cứng. Nghiên cứu thiết bị bán dẫn và thể rắn phát triển mạnh mẽ trong thập niên 1950 và 1960, khi công nghệ đèn điện tử chân không chuyển sang các điốt bán dẫn, tranzitor, mạch tích hợp (IC) và LED.
Nguồn : Wikipedia